Tag Archives: Tips

Classic question about the use of a Cantilever beam for designing vehicle structures

Good afternoon everyone! I know it’s been a while since the last post but I’ve been (and still am) very busy with all kind of simulations, tests and writing papers and my doctoral thesis. Hopefully, I’ll manage to write some more articles during the summer! I recently had a conversation with some senior engineers from a F1 team regarding Cantilever beams and some erroneous assumptions which are commonly made, so I wanted to discuss it with you! Hope you enjoy this brief post!


A few weeks ago, I had the chance to speak with three top F1 designers and we had a chat about a certain question regarding the use of the Cantilever beam as a tool to design some vehicle structural components. First of all, let’s remind what this type of configuration is. A Cantilever beam is a structure which is fully constrained at one end, having a vertical load applied at the other end of the beam to study the effect of bending, as illustrated in Fig. 1.

cantilever1
Figure 1. Schematic of a Cantilever beam

This type of structure is very useful when designing certain components, since they can be simplified to this well-known beam, reducing the number of variables and being able to define simpler design targets. The thing is that usually, in reality, the components usually have some part of its length reinforced (e.g. thicker walls), so two questions arise: why is this non-homogeneous beam common and where should that reinforcement be placed?We agreed that a lot of people answer very quickly that it should be placed at the free end of the beam, i.e. where the load is applied. According to these people, the reason for this is pretty obvious, since that end will suffer the greatest deflection (I will write another post soon where I derive this and discuss some ways to calculate it by hand!). Hence, if that region was reinforced, the deflection would be smaller and the structure would be better in terms of bending performance. But, is this true? Let’s have a thought.

Continue reading

FEA for beginners (Part II)

Some of you may have found some difficulties when trying to create a structured mesh for circular/spherical parts. For that reason, this week I’m going to write about a┬ásimple procedure that you can follow in order to solve this problem: the “Butterfly Method”.


For achieving more accurate results, it is always recommended to use quad-structured meshes. Most of the FE packages include options for meshing parts in an automatic way, where you only have to define the number (or size) of elements and the type (i.e. quad, tri or even a┬ácombination of quad+tri elements). However, when geometries include circular parts or when you are creating an sphere or a cylinder, the automatic option for creating a structured mesh is not available any more. How can we solve that? Let’s find out.

Continue reading