Tag Archives: Structural Design

How to solve a Finite Element problem using hand calculations

Basically, when we want to determine the forces and displacements in a certain structure using Finite Element Analysis (FEA), what we are doing is creating a system of equations that relates the stiffness of the elements to the displacements and forces in each node. When we run a simulation, we do not see all the calculations. For that reason, today I want to illustrate a simple case that can be easily solved by hand applying that methodology.

Before getting started, just think of a spring. Everyone has come across the Hooke’s law at a certain point during school. It states that the force in the spring is proportional to a constant “k” multiplied by the variation in length of the spring. FEA follows the same principle, but in this case the “k” constant is the stiffness matrix and the variation in length is a vector of displacements and rotations, depending on the case.

Let’s study a simple static case. Our structure consists of two bar elements connected at a common node, where a load “P” is applied. The other two nodes have both horizontal and vertical displacements constrained (see the boundary conditions). For this particular case, the reactions in nodes 1 and 3 and the displacements of node 2 are requested. I have solved the problem by hand following a few steps that, based on my experience, can be generalised for more complex problems. Pretty much, the┬ásummary of the methodology is: Read more