Tag Archives: Materials Science

About Tsai-Wu failure criterion

Predicting material failure is always a challenge, especially when it comes to composites and advanced materials. There are plenty of theories that try to provide a numerical approach to solve this complex problem, such as Maximum Stress/Strain Theories,  Hashin, Tsai-Hill or Tsai-Wu. Although all of them brought something valuable to the table, some of them don’t seem to be that precise when accurate results are needed. In these terms, Tsai-Wu is my least favourite criterion and I’ll explain the reasons for that.


First of all, Tsai-Wu is an interactive failure criterion for composite materials. This means that the theory takes into account the interaction of different stress components in order to predict failure. Basically, the criterion uses equation 1 (subjected to the condition given by equation 2) to calculate an index and, if its value is one, then it means the material is failing. Please note that i,j=1,2,…,6, where subindices 1 to 3 represent normal stress components and 4 to 6 are shear stress components. In the original publication, authors explain how the different coefficient can be determined through experimental tests (e.g. compression, tension, biaxial…). So far, so good.

01
Equation 1
02
Equation 2