## The importance of checking contacts in FEA

This week I wanted to write a brief post regarding a very common problem that can be found when running and post-processing Finite Element models: the correct definition of contact algorithms.

During this week, I had a conversation with other engineers about some issues related to the TIED CONTACT definition. In these terms, any commercial FE package gives you the opportunity to define this type of contact in a relatively easy way: you select the nodes or surfaces (master and slave) and then the pre-processor shows some kind of symbol in order to highlight that the contact has been established. However, the symbols and the fact that you have followed the standard steps of the software do not mean that the parts are going to behave as expected. Read more

## FEA for beginners (Part III)

One of the dangers of FEA is that it provides results, even if they are wrong. Hence it is the engineer’s responsibility to critically analyse and validate them. In these terms, one of the most common rookie mistakes is “hourglass”. If you want to learn what it is and how to correct it, this is your place.

To begin with, let me introduce two different concepts: underintegrated elements and fully integrated ones. Underintegrated elements are only evaluated at one single integration point, whereas fully integrated ones have more than one. In order to illustrate this idea, Figure 1 is introduced.

Figure 1 (a) Underintegrated element; (b) Fully integrated element

## FEA for beginners (Part I)

The main idea of this post is to provide an overview of the outline of a Finite Element Analysis for people who are not familiar with this engineering tool.

The starting point for every Finite Element Analysis is a real problem which has to be solved. For that purpose we have to create an idealised structure and, from that idealisation, we should be able to design a discrete model. Hence, using the Finite Element Method, a discrete solutions can be obtained for that model.

## A brief introduction to Finite Element Analysis

Have you ever come across the term “FEA” or “FEM” when talking about structural analysis? If you have and you still don’t understand  what it means and how it works, this post is for you. Don’t be afraid, no scary equations are presented here!

Finite Element Analysis (FEA), or Finite Element Method (FEM), can be defined as a methodology for solving field problems using numerical approaches. This kind of problem needs the determination of a spatial distribution and this can be seen, for instance, as the distribution of temperature in the piston of an engine. From a mathematical point of view, a numerical solution of a field problem is defined by differential equations or by integral expressions.